

VRML Standard
Version 2.0

March 2025

What is VRML?
The Virtual Reality Markup Language (VRML) is designed to describe how a location in
the VRWeb needs to be displayed. A software that supports VRML and its associated
protocols (HOPPER), can take the information that is stored in this data file to download
the assets and create the experience that was defined in such a file.

What’s new?
Version 1.0 of the VRML Standard failed at the attempted to be universal and platform
independent. It relied to much on specific, existing software solutions and was neither
flexible nor future prove. The new Standard v2.0 on the other hand is designed to solve
these identified key weaknesses of the first version and extend the standard with the
accumulated knowledge of the last couple of years.

VRML v2.0 is designed as an Open Standard to be extended for future needs.

Unfortunately, because of the substantial changes, the new Version 2.0 is not
backwards compatible at all. For existing projects, the VRML-Files need an update to
work with an VRML v2.0 compatible Hopper if the Hopper doesn’t support both versions
simultaneously. But you’ll find it straight forward to update your VRML-Files from v1.0 to
v2.0 because the information is now part of individual designed protocols or is not
needed any more.

How is a VRML-File structured?
VRML follows the guidelines of an XML data file. So, the data is enclosed with a VRML-
Tag and specification of the used version.

Example:
<vrml version="2.0">

</vrml>

The first part is a general section with a domain (rootDomain) for connecting the
location to a world. If this is not specified a VRML compatible hopper should use the
base of the link as the domain. With %ROOT% you can patch this root domain in the
entire VRML-File.

The next part is a mandatory section that contains the creator/publisher information of
the location. By ensuring that this section is mandatory all locations and worlds will
have a legal notice that defines who is owner and responsible for the content.

Example:
<vrml version="2.0">

 <rootDomain>https://example.com/MyWorld</rootDomain>

 <creatorInfo>

 <name>Creator's Name</name>

 <legalNotice type="Text">

 Legal notice as text or link

 </legalNotice>

 <copyright>© Creator 2025</copyright>

 </creatorInfo>

</vrml>

The last part is a collection of sections that can be defined individually. They require a
defined protocol and a version. Thes protocols are defining how and what should be
displayed. A Hopper can read each of these sections and can figure out if or if not, it
supports those display protocols and then follow the portal or inform the user that this
portal requires additional software that supports this special protocol.

There are some predefined protocols available.

Complete Example:
<vrml version="2.0">

 <rootDomain>https://example.com/MyWorld</rootDomain>

 <creatorInfo>

 <name>Creator's Name</name>

 <legalNotice type="Text">

 Legal notice as text or link

 </legalNotice>

 <copyright>© Creator 2025</copyright>

 </creatorInfo>

 // Protocols

 <protocol name="WORLD_BUILDER_PROTOCOL" version="1">

 <locationPath>%ROOT%/MyLocation.wbz</locationPath>

 </protocol>

 <protocol name="META_INFO" version="1" optional="true">

 <name>Name of the location</name>

 <description>Description of the location</description>

 </protocol>

</vrml>

Protocols

Age Restriction Protocol
Protocol: AGE_RESTRICTION
Protocol Version: 1

Use Case:

Use this protocol if you want to deny access for under or overage users.

Values:

min integer - optional
Minimum age
max integer - optional
Maximum age

Example:
<protocol name="AGE_RESTRICTION" version="1">

 <min>16</min >

 <max>99</max >

</protocol>

Download And Run Protocol
Protocol: DOWNLOAD_AND_RUN
Protocol Version: 1

Use Case:

Use this protocol to download and run an app. Please be aware that this is designed to
be untrusty. All Hopper implementations should ask the user if they want to download
and run the app.

Values:

appName string/text
Name of the Hopper
waitOnReturn bool
This is for a return to this Hopper if the other Hopper/App is closed
appPath string/text
Specify the download link for the application here

Example:
<protocol name="DOWNLOAD_AND_RUN" version="1">

 <appName waitOnReturn="true">MyApp</appName>

 <appPath>https://example.com/MyApp_Installer.exe</appPath>

</protocol>

Error Protocol
Protocol: ERROR
Protocol Version: 1

Use Case:

Use this protocol if you want to inform the user about a non valid portal or other types of
errors.

Values:

id integer
Error message Id e.g. 404, 500 etc.
message string/text
Additional error message text

Example:
<protocol name="ERROR" version="1">

 <id>500</id>

 <message>Internal server error!</message >

</protocol>

Hopper Multi User Space Protocol
Protocol: HMUS
Protocol Version: 1

Use Case:

This protocol provides the required server address and port to connect to if the location
is a multi user space and uses a Hopper Multi User Space server.

Values:

host string/text
Address of the hosting server
port string/text
Port to connect to

Example:
<protocol name="HMUS" version="1">

 <host>127.0.0.1</host>

 <port>4711</port>

</protocol>

Meta Info Protocol
Protocol: META_INFO
Protocol Version: 1

Use Case:

This protocol provides necessary information for search engines and for user before
they use the associated portal.

Values:

name string/text
Insert the title of the location
description string/text
Insert the description for the location

Example:
<protocol name="META_INFO" version="1" optional="true">

 <name>Name of the location</name>

 <description>Description of the location</description>

</protocol>

Package Manager Download And Run Protocol
Protocol: PACKAGE_MANGER_DOWNLOAD_AND_RUN
Protocol Version: 1

Use Case:

This protocol is designed to give information for a package manger to download a
Hopper or app that should be use with this vrml. The package manager addresses are
stored in the hopper to query them when needed for this application. They are trusted
sources for apps.

Values:

appName string/text
Name of the Hopper
waitOnReturn bool
This is for a return to this Hopper if the other Hopper/App is closed
appId string/text
Use this for defining an app id for the package manager, this might be a guid

Example:
<protocol name="PACKAGE_MANGER_DOWNLOAD_AND_RUN" version="1">

 <appName waitOnReturn="true">AppName</appName>

 <appId>c55ff15d-826f-4534-bb03-7d82a9bebbaa</appId>

</protocol>

Portal Hopper Protocol
Protocol: PORTAL_HOPPER_PROTOCOL

Protocol Version: 1

Use Case:

Use this for locations that were build as Unity’s Asset Bundles in combination with the
SDK for Portal Hopper. Here all the information like Asset Bundle download address and
scene path are specified. Also some other configuration settings are included.

Values:

assetBundlePath string/text
This is the download address of the asset bundle
scenePath string/text
This is the path of the scene inside the asset bundle
loadMode enum as string/text
Use one of this 3 modes to define how the scene should be loaded:

Add
 Adds the scene to the already loaded scenes
 AddAsMain

Adds the scene to the already loaded scenes and set it as main scene
 Replace

Unload the loaded scenes and load the new scene as main scene

Example:
<protocol name="PORTAL_HOPPER_PROTOCOL" version="1">

 <assetBundlePath>https://example.com/MyLocation</assetBundlePath>

 <scenePath>Assets/Scenes/MyLocationScene.unity</scenePath>

 <loadMode>Replace</loadMode>

</protocol>

Recommended Hopper Protocol
Protocol: RECOMMENDED_HOPPER
Protocol Version: 1

Use Case:

This protocol should be use to define a recommended Hopper. If the currently in use
Hopper does support all the necessary protocols this is ignored. If not this information
can be use to decide witch Hopper should be used to display this VRML. Use this to
inform which hopper was used for testing.

Values:

hopper string/text
Name of the recommended Hopper
waitOnReturn bool

This is for a return to this Hopper if the other Hopper/App is closed

Example:
<protocol name="RECOMMENDED_HOPPER" version="1">

 <hopper waitOnReturn="true">OtherHopperName</hopper>

</protocol>

Steam Protocol
Protocol: STEAM
Protocol Version: 1

Use Case:

Use this protocol to start a steam app.

Values:

steamId integer
Specify the steam id for the app you want to run. The app needs to be installed ahead.
waitOnReturn bool
This is for a return to this Hopper if the other Hopper/App is closed

Example:
<protocol name="STEAM" version="1">

 <steamId waitOnReturn="true">45000</steamId>

</protocol>

Streaming Protocol
Protocol: STREAMING
Protocol Version: 1

Use Case:

This is a protocol that defines entire locations with every asset in it. It’s a very large
protocol. For further information please have a look into its dedicated definition file.

Unknown Protocol
Protocol: UNKNOWN
Protocol Version: 1

Use Case:

This is a very special protocol and can be used only internally inside a hopper for not
supported protocols. It is listed here to reserve this protocol name.

Values:

This protocol has no values!

World Builder Protocol
Protocol: WORLD_BUILDER_PROTOCOL
Protocol Version: 1

Use Case:

This protocol is for World Builder export loading. It provides a Hopper with the
necessary download address of the World Builder export file, so that a Hopper can
download, load, and run the experiences generated with the World Builder.

Values:

locationPath string/text
Download address for a World Builder export file

Example:
<protocol name="WORLD_BUILDER_PROTOCOL" version="1">

 <locationPath>https://example.com/MyLocation.wbz</locationPath >

</protocol>

